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Abstract 

This paper describes an AI and robotics research project 
being conducted for NASA. The applications of our findings are 
for robots performing tasks in space. 

The use of robots in the future must go beyond present 
applications and will depend on the ability of a robot to adapt 
to a changing environment and to deal with unexpected scenarios 
(i.e., picking up parts that are not exactly where they were 
expected to be). The objective of this research project was to 
demonstrate the feasibility of incorporating high level 
planning into a robot enabling it to deal with anomalous 
situations in order to minimize the need for constant human 
instruction. 

Our heuristics can be used by a robot to apply information 
about previous actions towards accomplishing future objectives 
more efficiently. Our system uses a decision network that 
represents the plan for accomplishing a task. This enables the 
robot to modify its plan based on results of previous actions. 
Our system serves as a method for minimizing the need for 
constant human instruction in telerobotics. 

This paper describes the integration of expert systems and 
simulation as a valuable tool that goes far beyond this 
project. Simulation can be expected to be used increasingly as 
both hardware and software improve. Similarly, the ability to 
merge an expert system with simulation means that we can add 
intelligence to the system. 

This paper describes a satellite in space that has a 
malfunction. The expert system uses a series of heuristics in 
order to guide the robot to the proper location. This is part 
of task level planning. 

The final part of the paper suggests directions for future 
research. Having shown the feasibility of an expert system 
embedded in a simulation, the paper then discusses how the 
system can be integrated with the MSFC graphics system. 
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I ntroduc ti .on 

It has been recognized for some time that intelligent 
telerobot architecture will become an increasingly important 
force in space activities [Reference 11. There has been a 
great amount of previous research which has focussed on these 
issues [References 2-27]. At this point we are focussing on 
one part of the architecture, namely task level planning. The 
balance of this paper will describe our research in that area 
and some thoughts for future directions. 

Project Objectives 

1. The first objective was to show the feasibility of having a 
robot in space exhibit some autonomous behavior. 

2. The second objective was to demonstrate the ability for the 
robot to use intelligent planning and replanning. 

3 .  The third objective was to show how the system can be 
adaptable to different satellites or space station 
configurations. 

4 .  The fourth objective was keep the "man-in-the-loop" so that 
when the search did not yield the expected results, then ground 
control can redirect the search. 

5. The fifth objective was to develop a feasibility model and 
demonstrate it at MSFC. 

The objectives are shown graphically in Figure 1. 

*Dr. Gerstenfeld received his Ph.D. from MIT and holds the 
position of Professor having an endowed chair at Worcester 
Polytechnic Institute (WPI). He is president of UFA, Inc. 
where the research described in this paper has (and is) taking 
place. 
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The work carried out can best be understood by referring 
to Figure 2. The robot is instructed to replace module A,  The 
robot, however, is located at module H. Therefore, it must 
plan how to get from where it is located to the required 
location. 

phase I P r o j e c t  O b j e c t i v e s  

In order to do that planning we showed how it was 
necessary for the robot sensor to obtain two orientations: 

(I-'. rnan-'n-'oop) 

1. Present location (i.e. "€I") 

2. Module directly above (i.e. "D") 
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It is necessary for the robot to know the module above in 
order to gain orientation. This can be thought of as a person 
who is lost and he locates the street he is on but that is not 
enough. He must also know one other point (another street o r  
landmark) in order to determine his orientation. 

Having determined that the robot is at H and oriented so 
that D is directly above it - the decision can then be made 
that the robot must: 

Move UP "1" 
Move 4 to LEFT 

After moving up 1 and 4 to left the robot may still not 
locate module A due to other discrepancies. In that case the 
robot will use further heuristic search using the same 
principle as described above. This can be done recursively 
until a solution is found or instructed otherwise by a human in 
the loop. 

A second example is that the robot is at "G" and must move 
to "L". His orientation shows that "K" is above the robot and 
the robot then reasons that it must move 1 down and 1 to the 
right. 

E G H  

I \  J K 

A Simulated Satellite with Different Modules 

Figure 2 
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We, therefore, observe that each movement for the robot 
does not have to be given to it. Rather the robot can reason 
and perform intelligent search. During Phase I we designed the 
computer code necessary to accomplish independent search. 

The work carried out included the building of a simulation 
on a COMPAQ 3 8 6 .  We designed the computer code to integrate 
the graphics and artificial intelligence. 

Results Obtained 

The results obtained can best be understood by referring 
to Figure 3 in terms of goals and subgoals. For example, in 
Figure 3 let us assume the goal is to locate a particular part 
of a satellite. This could also be a part on space station 
exterior or interior. 

Figure 3 shows that: 

0 Subgoal 1 is "Recognize current location" 

it is necessary to have two further subgoals as follows: 
In order for the robot to regognize its present location 

0 Subgoal 1.1 is "Identify the place where the robot is 
cur rent 1 y loc at ed 'I 

This is achieved by an action as follows: 
"Use vision system to locate a point straight ahead". 

This can best be thought of by thinking of a person lost 
in an area he does not know. The person must first look for a 
street sign to identify the street where he is standing. 
Having achieved the above it is necessary for the robot to find 
one other point. For the example we used, the other point was 
the module directly above the current module. 

By using the analogy again of the lost person, once he 
found out what street he was located on he then had to locate 
one other marker. Let us assume that his eyes moved up and he 
located a cross street to the one on which he was standing. 
Referring to Figure 3 that is the following action: 

Use vision system to look for the module that is directly 
above the current module. 

Having now established the locations of the robot (and its 
orientation) the subgoal 2 is as follows: 

0 Plan moves from current location to module ( o r  part) X. 

The action in that case is to: 
Use heuristics and world model to plan moves to module X. 
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This can be thought of again as the lost person who has now 
sufficiently identified his location and orientation then 
planning his move to his destination. 

Goal: 
Locate Module 1 (or part) X 

A Subgoal-1 : 

I Recognize current I location 

dentify the place where 
he robot is cunently 

Recognize the 
arientation of 

I 
Action: 
Use vision system 
to locate a point 1 straight ahead 

the 1 

Subgoal-2: 
Plan moves from 
current location 
to Module 
(or part) X 

f > 

+- Subgoal-3: 
Move telerobot to I Module (or part) X 

Action: 
Robot moves to 

Action: 
Use heuristics and 

I I world model to plan I 
moves to module X 

Use vision system 
to look for the module 
directly above the 
current module 

Different levels of declslon-making In the system 

Figure 3 

The final subgoal is: 
0 Move telerobot to a particular location or part 

The action associated with that goal is as follows: 
Robot moves to new location 

We showed this process of goals, subgoals, and actions 
using a model of a satellite. In this case we limited our 
investigation so that the input from the sensors were given by 
the user of the simulation. This can be visualized in Figure 
4 .  

Future Directions 

1. Development of an AI planner to generate task level path 
commands to a satellite servicer robot. 

2. To integrate our system with the graphical simulation model 
at MSFC. 
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3 .  To include a model of a generic satellite with subsystems, 
e.g. power, altitude control, communications, etc. 

4 .  To develop a diagnosis system that will be used to 
identify a list of possible failed subsystems. 

5. To demonstrate higher level task planning by performing 
diagnosis and robot path planning in order to replace (or 
repair) a subsystem. 

Our approach can best be understood by considering 
Figure 5. We shall be focussing on the task decomposition 
modules and show how they can perform real-time planning. The 
task decomposition modules plan and execute the decomposition 
of high level goals into low level actions. 

Figure 4 shows on the right, the operator interface. On 
the left the global memory. The task (which might be "locate 
tool A" or "replace module B" is shown in H4 of Figure 1. 
Having received the task requirement the system would then 
check the world model by moving one square to the left in 
Figure 1 to M4. This is integrated with the sensory 
information shown in G4 for Figure 1. 

The control system architecture is shown in Figure 5. The 
level we are focussing on is Level 4 ,  which decomposes the 
object task commands specified in terms of actions performed on 
objects. 

SENSORY WORLD TASK 

DETECT MODEL PLAN 
INTEGRATE EVALUATE EXECUTE 

MODELING DECOMPOSITION PROCESSING 

STATE VARIABLES 
EVALUATION FCNS 

PROGRAM FILES 

Fig.4 A hierarchical control system architecture for intelligent vehicles. 
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SERVICEIREPAIR 
MISSION I CONTROL 

SERVICE PARTS, TOOLS 

ORDERS 

5 INVENTORY 

ANIPULATOR 

DYNAMICS 

PAN ZOOM 
FOCUS 

, . .  
POWER 

ACTU AT0 R S 

Figure 5 

A six level hirearchical control system proposed for 
multiple autonomous vehicles. 
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